Monômios
Monômio ou termo algébrico é toda expressão
algébrica determinada por apenas um número real, uma variável ou pelo produto
de números e variáveis. Nos monômios não se encontra o uso da adição ou da
subtração, pelos menos explicitamente. São muitas as aplicações dos conceitos
sobre monômios, vão desde a confecção de objetos, como uma bola de futebol, até
o auxílio em representações de cálculos bem mais complexos.
Monômios
Não Monômios
Partes de um monômio
Um monômio é dividido em duas partes, um número, que é o coeficiente do monômio e uma
variável ou o produto de variáveis (letras),
inclusive suas potências, caso existam.
- 2x → 2 é o
coeficiente desse monômio e x é
sua parte literal;
- 3xy2 → 3 é o coeficiente desse
monômio e xy2 é
sua parte literal;
- wz → 1 é o
coeficiente desse monômio e wz é sua parte literal.
Grau de um monômio
Para um monômio com coeficientes não nulos, temos que seu grau se dará
através da soma entre os expoentes da parte literal.
- 1/2x2y3z4 → esse é um monômio do 9º grau
(2 + 3 + 4 = 9);
- bcd → esse é um monômio do 3º grau
(1 + 1 + 1+ = 3).
- 25 → esse é um monômio de grau zero (ausência da parte literal);
- Entre os monômios 2x2, 1/3x3 e 0,5x5 o
de maior grau é 0,5x5, pois 5 > 2 > 1/3.
Pode-se também atribuir o grau de um monômio em relação a uma de suas
incógnitas. Para isso é necessário fazer menção a incógnita considerada. Vejam
nos exemplos:
- ab2 → esse é
um monômio do 2º grau em relação a variável b;
- wz3 → esse é um monômio do
1º grau
em relação a
variável w;
- 4 → esse é um monômio de grau zero pela ausência de variável
(eis).
Semelhança entre monômios
Dois ou mais monômios são semelhantes quando suas partes literais são
iguais.
- 3xy e 2/5xy são iguais, pois possuem a mesma parte literal xy;
- 0,5a3b2 e 10a3b2 são
iguais, pois possuem a mesma parte literal a3b2;
- - 4vwz,
2,3vwz e 1/3vwz são iguais, pois possuem a mesma parte literal vwz.
Adicionando e/ou subtraindo monômios
Na adição de monômios com a mesma parte literal, adicionaremos os
coeficientes entre si e manteremos a parte literal.
- 2mn + 14mn + 5mn = 21mn (2
+ 14 + 5 = 21);
- 2,5 x2y + 1,5x2y – 0,5x2y = 3,5x2y (2,5 + 1,5
– 0,5 = 3,5);
- 3/2cd3 – 1/2cd3 + 5/2cd3 = 7/2cd3 (3/2 – 1/2
+ 5/2 = 7/2).
Um refrigerante custa x reais.
Márcio comprou 3 refrigerantes, Aline comprou 2, Poliana comprou 4 e Arthur
comprou 1. Qual é o monômio que representa quanto essas pessoas gastaram? → 3 + 2 + 4 +
1 = 10, portanto 10x.
Multiplicação de monômios
Antes de prosseguirmos nesse tópico, devemos relembrar uma propriedade
muito importante da potenciação.
am . an =
am+n
Na multiplicação de monômios, multiplicamos entre si os coeficientes,
assim como, a parte literal.
- 6x2y . 2x4 . 3y → 6.2.3 = 36 e
x2.x4.y.y = x6y2, ou seja, 36x6y2;
- 4abc4 . 4ab2c → 4.4 = 16 e
a.a.b.b2.c4.c = a2b3c5, ou seja, 16a2b3c5;
- 1/2wz . 2/3z → 1/2.2/3 = 2/6 ou 1/3 e w.z.z = wz2, ou seja, 1/3wz2.
Divisão de monômios
Convém relembrarmos mais uma propriedade importante da potenciação.
am : an =
am – n
Na divisão de monômios, dividimos entre si os coeficientes, bem como, a
parte literal.
- 12x4y : 3x2y → 12:3
= 4, x4:x2 = x2 e y:y = 1, ou seja, 4x2;
- 50b6c8d4 : 25b2c4d4 → 50:25 = 2, b6:b2 = b4, c8:c4 = c4 e d4:d4 = 1, ou seja, 2b4c4;
- 4mn10 : mn2 → 4 : 1 = 4, m:m
= 1 e n10:n2 = n8, ou seja, 4n8.
Potenciação de monômios
Antes de darmos continuidade ao tema, vale lembrar as seguintes
propriedades da potência a fim de facilitarmos o cálculo de potências de
monômios.
(am)n = am.n (a
. b)m = am . bm
- (4x3)2 → 42 = 16 e x3.2 = x6, ou seja, 16x6;
- (-3 . wz3)3 → (-3)3 . w1.3 . z3.3 = -27w3z9;
- Encontrar o quadrado do monômio -11a4 → (-11a4)2 = (-11)2 . a4.2 = 121a8.